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1 Base-Station Signal Processing

The HTC Vive base-stations operate in pairs to send information that can be detected by an infrared
(IR) sensor and used to the determine the position of the sensor. The functionality provided is thus
similar to that of GPS, although the information transferred from the base-stations is relative angle
measurements rather than distances. No processing occurs on the base-stations for computing the
position of the sensor, resulting in a system that can be used for multiple sensors simultaneously
with positive security-implications.

Each base-station unit consists of a line laser that rotates at 120 rpm in both the horizontal and
vertical plane. By determining the time taken from the first calibration-pulse arrives to when the
laser-pulse arrives, the relative angle between the sensor and the base-station can be determined.
The calibration-pulses are also used by the base-station to synchronise the rotation of their line
lasers. The pulse-sequences are summarised in Table 1.

Table 1: Pulse Characteristics

Pulse start (µs) Pulse length (µs) Source station Meaning

0 65–135 A Sync pulse (LED array, omnidirectional)
400 65-135 B Sync pulse (LED array, omnidirectional)

1222-6777 ∼10 A or B Laser plane sweep pulse (center=4000µs)
8333 End of cycle

One base-station is set to be the master of the system (A) and the other is set to be the slave (B).
The calibration pulse of the master arrives before the calibration pulse of the slave, and it is as
such easy to tell them apart. The duration of the calibration-pulse of the master and of the slave
describes which angle-reading the following line-laser-pulse will correspond to in accordance with
Table 2. Axis 0 is horizontal and axis 1 vertical. The data-bit is discarded.

Table 2: Ideal Package-Characteristics

Name skip data axis length (ticks) length (µs)

j0 0 0 0 3000 62.5
k0 0 0 1 3500 72.9
j1 0 1 0 4000 83.3
k1 0 1 1 4500 93.8
j2 1 0 0 5000 104
k2 1 0 1 5500 115
j3 1 1 0 6000 125
k3 1 1 1 6500 135

1.1 Hardware Implementation

Figure 2 shows the circuit we used to detect the IR-signal and process it for the micro-controller.

With the base-stations active and mounted below the roof, the sensor was positioned on the floor
and various readings performed using an oscilloscope and Teensy serial-prints. The below graphs

3



Figure 2: Sensor Circuit

Source: https://github.com/ashtuchkin/vive-diy-position-sensor

seeks to outline some of the characteristics of the signal and to test the function of the different
stages of electrical processing performed on the signal.

1.1.1 High Pass Filter

After the initial transimpedance amplifier comes the high pass filter. The high pass filter is seen
to remove the DC component (orange line) form the signal coming out of the first Op-Amp (blue
line) during normal operation. In the figure below, the sensor is located about 1.8 meters from
the base-stations. We see the calibration pulses do not saturate the first Op-Amp as the signal
coming into the capacitor has an amplitude less than VCC (5V). We also observe a large deviation
in amplitude between the the calibration signals (located at 0.0000 and 0.0005 s) and the signals
from the line-lasers (located at -0.0038 and 0.0048 s).
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1.1.2 Processor Hardware Filtration

Using the Input Capture Filter Control mechanism on the MK20DX256VLH7 processor, the input
signal from the IR sensor circuit is smoothed through a low pass filter and its voltage level decreased
to 3.3 V as we can see in the figure below.

By zooming in on the end of the second peak, we see how this final layer of hardware filtering squares
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the trailing edge of the signal without generating small pulses for the input oscillations.

1.2 Software Implementation

The implemented algorithm uses the Teensy 3.1 processor running at 72 MHz. Flex-timers are
used to determine pulse lengths and a falling edge interrupt routine collects this information and
passes it to the main thread of the algorithm. The digital signal processing is broken into three
steps: pulse detection, package detection and signal extraction.

1.2.1 Pulse Detection

Information from the separation of pulses is used to determine whether a pulse is correctly detected
or whether the rising edge is caused by noise. Tests have revealed that there is a danger of a rebound
pulse arising if the Op-Amps become to heavily saturated. This is handled by discarding pulses
that arrive too close to the end of another pulse as seen at the end of the first pulse below.
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1.2.2 Package Detection

The information in Table 1 is used to identify the first and second calibration peaks as well as
the following line-laser pulse and any associated noise. The calibration pulse durations and pulse
arrival times are passed on to signal extraction.

1.2.3 Signal Extraction

Figure 3: Defining Angle

We know the calibration pulses are being sent in a given or-
der:

1. horizontal pulse from master

2. vertical pulse from master

3. horizontal pulse form slave

4. vertical pulse from slave

The fact that packages arrive sequentially enables the system to
infer which signal type is going to arrive based on time after an
initial calibration period where this time-cycle is determined. The
main advantage with this is to enable the system to correctly iden-
tify the signal type despite some mechanical interference. In practice this makes a large difference
to the accuracy of operation of the system. It is implemented so as to preserve the following
properties:

• Thousands of consecutive packages can be lost due to mechanical interference without im-
peding the system’s ability to regain the signal.

• The start-time of each pulse is used to ensure no drifts in timing between the base-stations
and our processor.

After proper calibration, there is no chance for interpreting the signal type incorrectly. The func-
tionality is summarised in Figure 4.

The signal output from the system is in radians and measured from the centre line of the front-face
of each base-station unit as shown in Figure 3.
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Figure 4: Angle-Reading Flow Chart
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2 System Validation

A Jupyter Notebook was written to validate the components of the Vive-based positioning system
and estimate the overall accuracy obtained and limits of operation. The script is designed to take
a file containing the serial-output from the verbose debug-mode of the Teensy program. To enter
debug mode you plug the Teensy-board to power with a jumper between ports 11 and 12. When
launched, double-press the button to enter verbose mode. The file Parsing reads the output format,
while Visualising contains a series of helper-methods to make it easy to plot the data.

2.1 Validating Pulse Classification

For this initial test, we use the roof-mounted base-stations and position the sensor between them.
The digital signal read by the sensor is monitored by falling/rising edge interrupts that record
the timing-information for each input pulse. A histogram of the pulse-widths is seen below. The
next graph uses the package-recognition functionality in the Teensy code to determine which pulses
originate from the master and slave base-stations and plots the pulse-widths accordingly.

We see that pulses of varying length are detected in what corresponds to the range of the calibration-
pulses as well as the signal pulses. In the first plot, there is not eight distinct pulse-widths to be
observed, but a series of double spikes. When we in the second graph separate the signals from the
master and the slave base-station, we see that this double-spike behaviour is caused by there being
a constant shift between the pulse-widths from the two. This is something we account for in our
classifier by determining the pulse-class from the longest/shortest calibration pulses received from
the n most recent pulses.
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Note: The discrete values for pulse-length observed here is caused by an integer division to result
in truncation and loss of accuracy. This has been updated to a floating point deviation operation,
resulting in a much better resolution to the pulse-widths.

2.2 Normal Distance Variation

The following data was collected with the base-stations mounted in the roof at 6 meters distance
and in opposite corners of the room. The sensor was mounted on a camera tripod 1.3 meters below
the roof. The tripod was then positioned under one base-station and moved across the room in 30
cm steps. 1 minute of data was recorded for each position. For simplicity, we only consider the
data from the master base-station (the results for the slave is very similar).

We see the pulse-widths fall into 8 distinct classes (despite variations between data-sets).

There should be 30 pulses/second ∗ 60 seconds = 1800 pulses arriving per angle. Due to the data-
bit, this will be split between two angle readings, giving on average 900 pulses that we expect in
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each class. We know the data-pulse is the second most significant bit (see Table 2) of the signal-
distribution, so the pattern where we see j0 receive about 1000 pulses in the given period while
j1 receives about 800 pulses etc. makes sense - they sum to 1800, giving the expected number of
pulses coming in for each angle.

Interestingly, we see the data-points collected in the middle of the two base-stations (eg. 2.5
meters) have a significant number of dropped packages. This was later discovered to be caused by
the comparator being set too high so that large incident-angles on the sensor did not trigger the
registration of a digital pulse. When lowering the comparator value the system is seen to work with
significantly larger angles. For more information, see Section 2.8.

In order to more clearly asses the correspondence between pulse-width/sensor distance and classification-
algorithm the following plot was made. The black dots correspond to the data-points collected,
and the coloured lines to the mean pulse width of each pulse-class.

We see a clear classification for the bands where we have signals in all eight classes. Where the
longest or shortest pulses are missing, this system breaks down which is to be expected given our
implementation. This breakdown is acceptable, as we assume that the package-arrival-time will be
calibrated in a region where it is able to receive readings from all angles.

If we look at the numerical error for this data-set, we confirm that there is reception-issues for
certain angles. A large number of the positions lack about 1800 data-points, suggesting one of the
four angles have not been measured at all. From this we again conclude that the issue is systematic
and related to input-angle on the sensor and/or other factors.

When we use the measured-angle breakdown for this data-set we see that while bv (angle in the
vertical plane from the master base-station) is the angle that is missing the most, this is not always
the case.
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Table 3: Error-Log for Normal Distance Variation

distance to L1 (m) # collected points # lost points % error rate # signal gaps

4.1 7199 1 0 2
3.8 7111 89 1 88
3.6 5396 1803 25 1802
3.3 5398 1799 24 1800
3.1 3920 3276 45 1799
2.7 5396 1803 25 1800
2.5 7196 4 0 4
2.2 7197 3 0 3
2.0 5445 1755 24 1755
1.8 5399 1800 25 1800
1.6 4013 3185 44 1799
1.4 5396 1803 25 1800

From this we conclude that the signal-classification seems to work well when we are measuring all
angles. There is however a significant problem present with regards to signal reception (resolved,
see Section 2.8).

2.3 Light Interference

To evaluate the performance of the system with interference, data-points are collected with/without
light on and with/without blinds down. During the capture the sky was blue, but no direct sunlight
came through the window.
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The angles measured in the different situations are identical and the differences in pulse-widths
seems to be very small - we can confidently conclude normal light sources will not disturb the
system.

We do however observe that when direct sunlight falls on the sensor, the OpAmps get fully saturated
so that the input comes to rest at a permanent high and no information is as a consequence
communicated.

2.4 Minimum Operation Distance

In order to determine the minimum operation distance of the system, two base-stations were posi-
tioned next to each other with a sync-cable (requiring one base-station to be in mode b while the
other is switched to A). The sensor was mounted on a tripod located directly in front of the master
and moved backward in 10 cm increments, starting at a 40 cm distance from the base-stations.

We see a very clear correlation between calibration pulse-width and base-station distance. When
the sensor is very close, the difference is huge while the rate of change rapidly decreases as we reach
a more normal operation distance.

All distances larger than 0.8 m is here seen to give clean data. The systematic change in signal with
distance is not important, as the sensor was not kept directly in front of the base-station.
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Table 4: Error-Log for Minimum Distance Testing

distance to base-stations (m) # collected points # lost points % error rate # signal gaps

0.40 526 74 12 74
0.50 558 42 7 42
0.60 598 2 0 2
0.70 600 0 0 0
0.80 598 2 0 2
0.90 600 0 0 0
1.00 600 0 0 0
1.10 600 0 0 1
1.20 599 1 0 1
1.30 600 0 0 0
1.40 600 0 0 0
1.50 600 0 0 0
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2.5 Maximum Operation Distance

With procedure like to that used for min-distance, the max-distance of the system was deter-
mined.

We see there is no signals detected past 5.5 meters, and that only a few signals are collected at 5.5
meters.

Table 5: Error-Log for Maximum Distance Testing

distance to base-stations (m) # collected points # lost points % error rate # signal gaps

3.00 599 1 0 1
4.00 599 1 0 1
5.00 600 0 0 2
6.00 0 0 100 0
5.50 186 412 68 119
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2.6 Sensor Angle

To determine the signal-integrity at different sensor angles, the sensor was taped to the angle-
measurement device and rotated through 180◦ from 90◦ to −90◦ horizontally.

We see that sensor-rotation has little effect on the number of detected packages and pulse-durations
when we operate within suitable bounds (±60◦). There is an apparent asymmetry in the operation
of the sensor from left to right, but this difference is likely primarily caused by mechanical shielding
from misalignment between the base-stations and the sensor during the test-setup.
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The rotation was then repeated with the sensor oriented vertically to much the same effect. The
same range is obtained and a slight asymmetry between top and bottom is observed.

2.7 Base-Station Angle

To determine the signal-integrity at different sensor angles, the sensor was screwed/taped to a
angle-measurement device and rotated both horizontally and vertically. We observe that the mea-
surements are very accurate, but that there is a systematic error present.

The following factors have been determined to not impact this systematic deviation significantly:

• different time/days

• different locations

• whether the base-station is operating as master or slave

whereas these factors do cause a noticeable change:
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• which base-station is used

• which angle (horizontal or vertical) of the base-station is measured

• the orientation of the base-station

We have not been able to determine the root cause of this, but are left to assume there is some
imperfection in the operation of the base-stations (a systematic non-constant rotational speed,
imperfections in the line-laser mirrors, imperfection in the cover-class etc.).

The below graphs show the error in angle reading for two different base-stations for the two different
angles. Each measurement was taken twice, with a separate curve-fit performed for each data-
set.
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The slopes are computed to be:

• Base-station 1 horizontal: 0.00317 and 0.00315, average: 0.00316

• Base-station 1 vertical: -0.00111 and -0.00161, average: -0.00136

• Base-station 2 horizontal: 0.00145 and 0.00142, average: 0.00144

• Base-station 2 vertical: -0.00280 and -0.00352, average: -0.00316

The average slope across all measurements is 1.8× 10−5 with variance 6× 10−6

The below graphs are collected from the same base-station and for the same angle, but with the
base-station in the correct orientation (standing normally) and the base-station laying on it’s side.
As we can see, there is a significant difference between the two, with the normal orientation yielding
the most linear result. This issue is left as a loose point for further investigation.

In an attempt to investigate a possible correlation between the arrival-times of each package and
the angle we obtain the following histogram. We see what appears to be a normal distribution
with mean period of 8333.3909µs and with standard deviation of 2µs. This close to the expected
8333.33µs. There is no systematic drift with angle, so a systematic clock-drift can not be the cause
of this error.
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2.8 Continuous Motion

In order to evaluate the performance of the system during a scenario more reminiscent to that
of the application, we move the sensor around in the room continuously while capturing data for
approximately one minute over the serial-port.

The fist graph is plotted using data-sets collected with the initial system-configuration. We see a
very clear issue arise with regards to lost readings, causing large gaps in the signal.

In order to investigate this issue we attempted to use three sensors simultaneously (all pointing in
different directions), but this still left blind-spots. We next connected the sensor and comparator
output to the oscilloscope and realised the issue would be solved by lovering the comparator-value.
The potential issues with loss of accuracy from ramp on analog signal is small and this drastically
improved reception as can be seen in the second graph below.

The second graph do however have issues with discontinuities for certain angles. This is caused by
reflection, and implementing a system for selecting the widest (most powerful) signal pulse enabled
us to pick out the right signal pulse when we have multiple arriving for a given package.

The third graph is the performance of the system as of 18. Aug 2017. There is few packages lost
and there is no reflections present.

Table 6: Error-Log for Different Configurations During Continuous Motion

Description # collected points # lost points % error rate # signal gaps

Initial configuration 5881 1260 17 786
With lowered comparator 7200 17 0 19
With reflection-handling 7497 33 0 32
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2.9 Dependence of Angle-Reading on Sensor Distance

In order to determine whether the distance has an impact on the angle-reading as could be indicated
by the earlier distance-readings, a distance-measuring laser is positioned at the exact centre of a
base-station and the laser-beam pointed to make a line going through the sensor. When moving
the sensor away from the base-station, the sensor is moved so that the laser is always kept on the
vertical axis going through the sensor.

The pulse-widths decrease with increasing length from the base-stations as expected. We do however
see a decrease in pulse-length at around 1 meter - the cause of this is unknown but it is a minor
point as the classifier still functions.

There is a discernible increase in angle as the sensor moves away from the base-station, but the
difference is on the order of 0.006 rad ≈ 0.3◦ and is as such fairly insignificant. We also see that a
significant change in angle only occurs for readings performed closer than 2 meters. We therefore
conclude that the angle does not depend on distance when operating in the normal range.
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2.9.1 Measure Angle from Middle of Signal Peak Instead?

Due to the potential change in start time, the question was raised as to whether it would be
beneficial to determine the angle reading not from the rising edge of the appropriate line-laser
peak, but form the middle of this peak. The following computes the middle distance of the data
used to plot the graph above so that we can compare the two methods.

We see that there is significantly better accuracy from not taking the width of the pulse into account
(here, difference is 0.015 rad > 0.006 rad for rising edge measurement above). This could be caused
by the saturation of the OpAmp causing a delay for the signal to go back down again. We are left
considering it beneficial to continue referencing the rising edge as we have been doing.
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2.9.2 Verifying Pulse Classification

In order to verify that the pulses are classified correctly, we use two methods:

1. comparing the two classifiers we have at hand, and

2. ensuring the angle-measurement for each angle makes sense (no jumps, discontinuities or
switching of values).

We begin by comparing the classifications on the data-set of varying distances form the base-station.
We see there is a high degree of agreement between the two. This is sufficient, as the calibration
only needs to get a given sequence calibrated correctly before the time-based classifier takes over.
This initial pulse-width classification process will typically be done in a good operating-rage of the
system, and will as such not have to be able to handle too large a range of distances.

2.10 Improvements and Suggestions

Based on the investigations performed in this section, the following improvements could be imple-
mented:

• The accuracy of the system is limited when moving away from the immediate volume sur-
rounding the calibration-points. The cause of this is unknown and needs further investigation.

• The calibration could be done using more point for increased accuracy.

• There occasionally arrives stray angle-readings with a value significantly different from what
they should be. What this is caused by is unclear, one possible source is when the timer
overflows (occurs about once a minute).

• A companion script could be written to read the verbose output and dynamically display the
information to get a real-time diagnostic tool for the system.
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2.11 Conclusion

The system perform is able to indicate positions with limited accuracy when moving away from
the immediate calibration-volume. It is very possible to use the system for navigation, but the user
must be aware of this limitation and take it into account for the application.

Differences in signal strength (and thus pulse-width) is:

• little affected by external interference

• little affected by base-station angle

• little affected by sensor angle

• little affected by distance between sensor and base-station

The operational parameters of the system is here demonstrated to be as follows:

• Range: 0.8 to 5 meters

• Base-station angle range: ±55◦

• Sensor angle range: ±60◦ (in both horizontal and vertical axis)

• Direct sunlight stops the system from working, but indirect sunlight and indoor lighting is
generally not an issue
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3 Base-Station Pose Calibration

In order to be able to determine the sensors position from the angle-measurements, we need to
know the pose (position and rotation) of both base-stations. This is difficult to measure directly,
so we seek to determine the base-station positions by taking angle-measurements with the sensor
in known positions.

There are several possible strategies for determining the base-station positions. The first we at-
tempted involved taking many readings from random points in space and using this information
to determine the poses of the base-stations relative to one another. Thereafter, points on the floor
can be collected to define a xy-plane etc.

We did however experience issues getting this method to converge. There is known issues with the
accuracy of the system, and under the current conditions there is a great number of local optima
that makes small changes in initial conditions lead to large differences in the solution.

The strategy we have implemented thus far is one in which four points in a square on the ground
is collected and each base-station pose fitted to this calibration-square separately. The method
has fair accuracy and is very easy to perform, especially when using a physical frame with the
appropriate square geometry.

3.1 Vive Position Calibration using 4 Points

With this calibration approach we attempt to use the smallest number of data-points to reduce
the number of local optima that can cause our minimisation-problem to converge to an incorrect
solution. We define a coordinate-system in the room and position a square with sides of known
length d in the xy plane such that:

• p1 is at the origin (0, 0, 0)

• p2 is along the positive y-axis (0, d, 0)

• p3 is along the positive x-axis (d, 0, 0)

• p4 is on the last corner of the square (d, d, 0)

Record angle-measurement a1, a2, a3 and a4 respectively from these points.

3.1.1 Strategy

The calibration is performed on each base-station separately. The algorithm can be outlined as
follows:

• Convert base-station angles to vector directions.

• Define lines from vector directions that go through the same point (the base-station, currently
defined to be the origin). We know the points will fall somewhere on these lines.

• Search for points on lines 1, 2 and 3 that conform to the known geometric relations between
points 1, 2 and 3. Two solutions will exits.
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• Perform this for both base-stations and compute position p4 using all 4 combinations of
base-station positions and the base-station angles a4 for this point.

• Choose the base-station positions that make the computed p4 fall closest to (d, d, 0).

Refer to Calibration.py for an implementation of this algorithm in Python. This implementation
has been translated with only minor changes to C++ for use directly on the Teensy module.

3.1.2 Mathematical foundation

Using the two angles measured for a point we are able to compute the line relative to the base-
station on which the point has to be located. Let the lines L1, L2, L3 correspond to these lines
passing through points p1, p2 and p3 respectively, relative to the given base-station.

A line can be parameterised by
L(t) = a + tb

We define the centre of the base-station as the origin such that a = (0, 0, 0), leaving us with

Ln(t) = tbn

as the general equation of a line, where b is defined as the direction-vector derived from the
intersection of the planes described by the base-station angle measurements.

We are seeking points p1, p2 and p3 on L1, L2 and L3 respectively such that

|u| = |v| = 1 ∪ u · v = 0

where

u = (ux, uy, uz) = p2 − p1

= L2(t2)− L1(t1)

= t2b2 − t1b1

v = (vx, vy, vz) = p3 − p1

= L3(t3)− L1(t1)

= t3b3 − t1b1

Figure 5: Problem Geometry

Expanding the constraining equations into components,
we get three equations.

ux
2 + uy

2 + uz
2 = 1

vx
2 + vy

2 + vz
2 = 1

uxvx + uyvy
2 + uzvz

2 = 0

Breaking these into components we reduce the sys-
tem
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|u| =(t2b2,x − t1b1,x)2 + (t2b2,y − t1b1,y)2 + (t2b2,z − t1b1,z)2

=(t2b2,x)2 − 2t2b2,xt1b1,x + (t2b1,x)2

+(t2b2,y)2 − 2t2b2,yt1b1,y + (t2b1,y)2

+(t2b2,z)
2 − 2t2b2,zt1b1,z + (t2b1,z)

2

=1

Factoring out t2

t2
2(b2,x

2+b2,y
2+b2,z

2)−2t2(b2,xt1b1,x+b2,yt1b1,y +b2,zt1b1,z)+(t1b1,x)2+(t1b1,y)2+(t1b1,z)
2−1 = 0

we get a second order polynomial on the form mt2
2 + nt2 + o = 0 with solution

t2 =
−n±

√
n2 − 4mo

2m

where 
m = b2,x

2 + b2,y
2 + b2,z

2 = |b2|2

n = −2(b2,xt1b1,x + b2,yt1b1,y + b2,zt1b1,z) = −2t1(b2 · b1)

o = (t1b1,x)2 + (t1b1,y)2 + (t1b1,z)
2 − 1 = t1

2|b1|2 − 1

t2 =
2t1(b2 · b1)±

√
4t12(b2 · b1)2 − 4t1|b2|2|b1|2

2|b2|2

Similarly, solving |v| = 0 for t3 gives coefficients


m′ = |b3|2

n′ = −2t1(b3 · b1)

o′ = t1
2|b1|2 − 1

so that

t2(t1) =
t1(b2·b1)±

√
t12(b2·b1)2−t1|b2|2|b1|2
|b2|2

t3(t1) =
t1(b3·b1)±

√
t12(b3·b1)2−t1|b3|2|b1|2
|b3|2

Now, consider the last equation in the system:

u · v =(t2b2,x − t1b1,x)(t3b3,x − t1b1,x)+

(t2b2,y − t1b1,y)(t3b3,y − t1b1,y)+

(t2b2,z − t1b1,z)(t3b3,z − t1b1,z)
=t2b2,xt3b3,x − t2b2,xt1b1,x − t3b3,xt1b1,x + (t1b1, x) + . . .

=t2t3(b2 · b3)− t2t1(b2 · b1)− t3t1(b3 · b1) + t1
2|b1|2 = 0

We can now substitute t2 and t3 to get one equation with one unknown. There will in general be
zero, one or two roots for each of t2 and t3 such that there could be from zero to four solutions to
the general equation. In practice, it is observed that exactly two solutions exist for each equation.
Point 4 is used to determine which solution is correct for the given setup.
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3.1.3 Algorithm

A Python script was written where the above computation is performed, see Calibration.py.

This is a visualisation of the 1d solution space. We solve for the zero-intercepts to determine the
distance from the origin to point p1 along line L1. From this it is possible to infer t2 and t3 which
makes the system fully defined.

Below is a representation of the solution for a sample setup. The base-station location and orien-
tation is indicated with the 3d axis embedded in the main coordinate system, and the points p1,
p2, p3 and p4 are located by reverse-engineering their position given the poses of the base-stations
and their respective horizontal and vertical angles.
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Calibrated poses for base-stations:

Master =



x = 1.471 m

y = 1.616 m

z = 2.580 m

rx = 2.521 rad

ry = −0.381 rad

rz = 2.083 rad

Slave =



x = −1.351 m

y = −0.924 m

z = 2.452 m

rx = −2.473 rad

ry = 0.575 rad

rz = −0.897 rad

The accuracy of these measurements is difficult to determine directly, as we are operating with
significant distances in three dimensions. We therefore ended up using measured points to evaluate
the accuracy of the fit (and therefore also the accuracy of the system). Points 1, 2 and 3 should
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coincide perfectly with their theoretical locations as they are used to perform the fit. Point 4 can
give us a sense of the quality/accuracy of the fit.

When calculating the points based on the angle-measurements and the computed base-station poses
we get the following results:

p1 = (0.000 m,−3.885× 10−16 m, 0.000 m)

p2 = (8.034× 10−13 m, 5.000× 10−1 m, 9.157× 10−13 m)

p3 = (5.000× 10−1 m, 4.440× 10−16 m,−1.554× 10−15 m)

p4 = (0.501 m, 0.497 m, 0.008 m)

We can see that p1, p2 and p3 are very close to their theoretical locations, indicating our calibration-
computation works. The slightly larger deviation from ideal in point p3 is caused by the fact that
this point’s location is updated slightly so as to make angle u and v perfectly perpendicular.

Point 4 gives us a sense of the performance of the actual calibration, as it was not used directly in
the calibration. It is here seen to be within 0.01 m of its intended location at (0.5 m, 0.5 m, 0 m),
which is decent for several applications.

4 User-Guide

The prototype was developed using ThingML which is a code-generation language built around
state-machines and asynchronous communication-messages.

4.1 Architecture

The functionality is split into 3 levels:

• The backbone represents the controller of the software - all messages passing form one part
of functionality to another is handled by the backbone.

• The applicative models are abstractions for the backbone. These models transform raw data
and compute required elements like position.

• The accessories level handles implementation-details for inputs and outputs. This includes
sensors data, persistent storage in EEPROM and LED status indicators.

4.2 Operation

The Teensy can be put into two different operating modes - ”Run” and ”Calibrate”. On launch,
the system will try to load a calibration from EEPROM.

• If it succeeds, it will go directly to ”Run” where it computes and outputs position.

• If if fails, it will go to to ”Calibration” where the base-station poses are to be computed.
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Figure 6: Sensor at Calibration Point 1 on Wooden Guide Frame

The system functions as follows:

• Calibrate by placing the base-station at the corners of a square that you use to define your
coordinate-system and pressing the button to record a point. Record points in the following
order:

1. Point at origin (0, 0, 0)

2. Point at 0.5 meters distance on the positive y-axis (0, 0.5, 0)

3. Point at 0.5 meters distance on the positive x-axis (0.5, 0, 0)

4. Point at 0.5 meters distance on the x-axis and y-axis (0.5, 0.5, 0)

• A green light indicates the point has been recorded, a red light indicates the point must be
recorded again.

• When all 4 points have been recorded the LED will:

– flash dark green if calibration is successful.

∗ The calibration will be stored to EEPROM automatically before the system transfers
to the running mode.

– red if the calibration failed and must be redone.
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• Long-pressing the button at any time will start a new calibration (this can also be used to
restart the calibration if an incorrect data-point has been collected).

4.3 Debugging and Verbose Mode

There is debugging-functionality in place using serial-prints to communicate computed values, states
and alert about events. The verbose-mode can be used for outputting data in a format that can
be read by Parsing.py in order to produce an array of Data-classes that contain all the information
and that can be used to diagnose the operation of the system. The file Visualizing.py has multiple
methods to quickly produce useful output (see Validation for details).

• Use a jumper-cable to short pins 11 and 12 on startup to ender ”debug” mode and get
serial-prints.

• Double press the button to toggle verbose printing.

4.4 LED Status Messages

The base colour of the LED indicates state as follows:

Table 7: States

ID Color State

1 ORANGE Load Calibration
2 YELLOW Calibration
3 ORANGE Validate Calibration
4 GREEN Runner

The LED will flash for events according to Table 8. The most important takeaway is that

• red: recalibrate

• green: things are working well

• blue: remove obstructions and ensure sensor is in operating-volume

• others: check above table and serial-print
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Table 8: Status Messages

ID Color Priority Information Sentiment Required action

0 RED 1 Computed lines do not in-
tersect

Severe Recalibrate

1 BLUE 0 One or more angles not re-
ceived

Fatal Remove obstruction or
reduce angles

2 LIME 1 Recording data-point for
calibration

Good Wait with sensor sta-
tionary

3 LAVENDER -1 Reflection present Handled None
4 DARK GREEN 4 Base station calibration

successful
Good None

5 DARK GREEN 3 Loading calibration from
EEPROM succeeded

Good None

6 DARK RED 3 Loading calibration from
EEPROM failed

Not ready Perform manual calibra-
tion

7 DARK RED 4 Calibration failed Retry Recalibrate
8 GREEN 2 Calibration point collected Good Proceed with calibration

on next point
9 RED 2 Calibration point not col-

lected
Retry Retry at this point

10 YELLOW 0 Unexpected package arrival
time

Handled None

11 BROWN 1 Consistently unexpected
package arrival time

Severe Wait for automatic re-
calibration of package
arrival times

12 CIAN 0 Calibrating package arrival
times

Not ready Wait and ensure good re-
ception

13 DARK GREEN 0 Package arrival times cali-
brated

Good System is operating nor-
mally

14 PURPLE -1 No signals received Fatal Turn on/move closer to
base stations/check sen-
sor

15 GREY 0 Signal type not recognised
(12 not done)

Severe Move sensor away from
base stations, check for
interference

- - - LED stops flashing - from
loop or crash

Fatal Restart Teensy, debug if
persistent
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5 External Sources

• https://github.com/ashtuchkin/vive-diy-position-sensor

• https://github.com/nairol/LighthouseRedox/blob/master/docs/Light%20Emissions.

md

• http://www.nxp.com/assets/documents/data/en/reference-manuals/K20P64M72SF1RM.

pdf
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